miércoles, 16 de abril de 2008

lunes, 14 de abril de 2008

Disco Rigido♥




¿Que es un disco rigido?






Los discos rígidos son los medios de almacenamiento de nuestras PCs. Es donde tenemos nuestro Sistema Operativo instalado y los programas que utilizamos, así como juegos, fotos, música etc... Hay principalmente dos características a tener en cuenta la velocidad y la capacidad de este dispositivo. De estos temas hablaremos en esta guía, intentando orientarlos sobre las distintas tecnologías y características que hay en el mercado. Cabe destacar que trataremos más que nada los discos de uso hogareño o de oficina, no los destinados a ambientes comerciales o los portátiles



Las características de un disco rígido son básicamente las siguientes:

♥Capacidad
♥Velocidad de giro
♥Velocidad de respuesta
♥Velocidad de transferencia
♥Caché
♥Interfaz
♥Tecnologías asociadas



Capacidad:

La capacidad es el dato más común de los discos duros e indica la cantidad de datos que podemos almacenar en ellos, actualmente contamos su capacidad por Gigabytes y las cifras actuales rondan entre 40 y 500GB. Aproximadamente un usuario normal con Windows XP utilizará entre 5 y 15GB de disco duro para el Sistema operativo y programas, quizá hasta 20GB. El resto de espacio ocupado serán los datos, juegos, música o videos.



Velocidad de giro:



Los platos del disco duro van girando a una velocidad. Dicha velocidad se mide en RPMs el estándar hoy es 7200RPM. La velocidad de giro es fundamental para que un disco duro vaya rápido ya que cuantas más vueltas por minuto más veces pasarán los datos que tenemos en el disco por el cabezal y por lo tanto irá más rápido.


Velocidad de respuesta:



Es el tiempo que tarda nuestro disco duro en encontrar y empezar a servirnos los datos, está íntimamente ligado con la velocidad de giro. Básicamente se traduce en el tiempo que tendremos que esperar entre que damos un click a un icono o fichero hasta que este se pone en funcionamiento, una vez se empiezan a transmitir los datos, ya es más relevante la velocidad de transferencia.



Velocidad de transferencia:



Es la velocidad con la que el disco duro nos transmite los datos una vez localizados, también está íntimamente relacionado con la velocidad de giro, pero hay distintas tecnologías que mejoran o intervienen en este aspecto del rendimiento del disco duro. Cuando más rápida sea la velocidad de transferencia más rápido se copiaran los ficheros de un sitio a otro. Siguiendo lo que comentábamos en el último punto podríamos generalizar mucho diciendo que en ficheros grandes importa la velocidad de transferencia y en ficheros pequeños importa el tiempo de acceso. Dependiendo la interfaz del disco, su velocidad. Mas adelante especificamos las mismas.



Tamaño del caché:



La memoria caché se inventó para distintos componentes informáticos y su propósito es tener allí datos que se consultan a menudo y que sean servidos de forma mucho más rápida que de donde deberían estar, esto ocurre tanto en procesadores como en los discos duros, aunque de formas bastante distintas. Los tamaños habituales de las memorias cache del disco duro son 2MB (ya descatalogados) 8MB, 16MB y pronto 32MB.



Interfaz:



Este es otro punto muy importante o básico para adquirir un disco duro, el interfaz de conexión de este tiene que ser compatible con nuestro motherboard, sino no podrá funcionar. Hoy en día se manejan dos interfaces PATA (IDE) o SATA.

Ranuras




Tipos de ranuras de expansión

TIPOS DE RANURAS DE EXPANSION DE UN PC.

En el tutorial Tarjetas de expansión vimos una serie de tarjetas que se utilizan para comunicar nuestro ordenador con una serie de periféricos.

En este tutorial vamos a ver un punto no menos importante, como es las ranuras de expansión (o slot de expansión) a las que van conectadas estas tarjetas.

Estas tarjetas de expansión, al igual que el resto de componentes de un ordenador, han sufrido una serie de evoluciones acordes con la necesidad de ofrecer cada vez unas prestaciones más altas.

Si bien es cierto que una de las tarjetas que más ha incrementado sus necesidades en este sentido han sido las tarjetas gráficas, no solo son éstas las que cada vez requieren unas mayores velocidades de transferencia.

Vamos a ver las principales ranuras de expansión que se pueden encontrar y su evolución en el tiempo:

Ranuras EISA:

Las ranuras ISA (Industry Standard Architecture) hacen su aparición de la mano de IBM en 1980 como ranuras de expansión de 8bits (en la imagen superior), funcionando a 4.77Mhz (que es la velocidad de pos procesadores Intel 8088).
Se trata de un slot de 62 contactos (31 por cada lado) y 8.5cm de longitud.

Su verdadera utilización empieza en 1983, conociéndose como XT bus architecture.

En el año 1984 se actualiza al nuevo estándar de 16bits, conociéndose como AT bus architecture.

Las ranuras ISA (Industry Standard Architecture) hacen su aparición de la mano de IBM en 1980 como ranuras de expansión de 8bits (en la imagen superior), funcionando a 4.77Mhz (que es la velocidad de pos procesadores Intel 8088).
Se trata de un slot de 62 contactos (31 por cada lado) y 8.5cm de longitud.

Su verdadera utilización empieza en 1983, conociéndose como XT bus architecture.

En el año 1984 se actualiza al nuevo estándar de 16bits, conociéndose como AT bus architecture.



En este caso se trata de una ranura (en realidad son dos ranuras unidas) de 14cm de longitud. Básicamente es un ISA al que se le añade un segundo conector de 36 contactos (18 por cada lado). Estas nuevas ranuras ISA trabajan a 16bits y a 8Mhz (la velocidad de los Intel 80286).

Ranuras EISA:



En 1988 nace el nuevo estándar EISA (Extended Industry Standard Architecture), patrocinado por el llamado Grupo de los nueve (AST, Compaq, Epson, Hewlett-Packard, NEC Corporation, Olivetti, Tandy, Wyse y Zenith), montadores de ordenadores clónicos, y en parte forzados por el desarrollo por parte de la gran gigante (al menos en aquella época) IBM, que desarrolla en 1987 el slot MCA (Micro Channel Architecture) para sus propias máquinas.
Las diferencias más apreciables con respecto al bus ISA AT son:

- Direcciones de memoria de 32 bits para CPU, DMA, y dispositivos de bus master.
- Protocolo de transmisión síncrona para transferencias de alta velocidad.
- Traducción automática de ciclos de bus entre maestros y esclavos EISA e ISA.
- Soporte de controladores de periféricos maestros inteligentes.
- 33 MB/s de velocidad de transferencia para buses maestros y dispositivos DMA.
- Interrupciones compartidas.
- Configuración automática del sistema y las tarjetas de expansión (el conocido P&P).

Los slot EISA tuvieron una vida bastante breve, ya que pronto fueron sustituidos por los nuevos estándares VESA y PCI.

Ranuras VESA:



Movido más que nada por la necesidad de ofrecer unos gráficos de mayor calidad (sobre todo para el mercado de los videojuegos, que ya empezaba a ser de una importancia relevante), nace en 1989 el bus VESA

El bus VESA (Video Electronics Standards Association) es un tipo de bus de datos, utilizado sobre todo en equipos diseñados para el procesador Intel 80486. Permite por primera vez conectar directamente la tarjeta gráfica al procesador.

Este bus es compatible con el bus ISA (es decir, una tarjeta ISA se puede pinchar en una ranura VESA), pero mejora la calidad y la respuesta de las tarjetas gráficas, solucionando el problema de la insuficiencia de flujo de datos que tenían las ranuras ISA y EISA.

Su estructura consistía en una extensión del ISA de 16 bits. Las tarjetas de expansión VESA eran enormes, lo que, junto a la aparición del bus PCI, mucho más rápido en velocidad de reloj y con menor longitud y mayor versatilidad, hizo desaparecer al VESA. A pesar de su compatibilidad con las tarjetas anteriores, en la práctica, su uso se limitó casi exclusivamente a tarjetas gráficas y a algunas raras tarjetas de expasión de memoria.

Ranuras PCI:



En el año 1990 se produce uno de los avances mayores en el desarrollo de los ordenadores, con la salida del bus PCI (Peripheral Component Interconnect).

Se trata de un tipo de ranura que llega hasta nuestros días (aunque hay una serie de versiones), con unas especificaciones definidas, un tamaño menor que las ranuras EISA (las ranuras PCI tienen una longitud de 8.5cm, igual que las ISA de 8bits), con unos contactos bastante más finos que éstas, pero con un número superior de contactos (98 (49 x cara) + 22 (11 x cara), lo que da un total de 120 contactos).

Con el bus PCI por primera vez se acuerda también estandarizar el tamaño de las tarjetas de expansión (aunque este tema ha sufrido varios cambios con el tiempo y las necesidades). El tamaño inicial acordado es de un alto de 107mm (incluida la chapita de fijación, o backplate), por un largo de 312mm. En cuanto al backplate, que se coloca al lado contrario que en las tarjetas EISA y anteriores para evitar confusiones, también hay una medida estándar (los ya nombrados 107mm), aunque hay una medida denominada de media altura, pensada para los equipos extraplanos.

Las principales versiones de este bus (y por lo tanto de sus respectivas ranuras) son:

- PCI 1.0: Primera versión del bus PCI. Se trata de un bus de 32bits a 16Mhz.
- PCI 2.0: Primera versión estandarizada y comercial. Bus de 32bits, a 33MHz
- PCI 2.1: Bus de 32bist, a 66Mhz y señal de 3.3 voltios
- PCI 2.2: Bus de 32bits, a 66Mhz, requiriendo 3.3 voltios. Transferencia de hasta 533MB/s
- PCI 2.3: Bus de 32bits, a 66Mhz. Permite el uso de 3.3 voltios y señalizador universal, pero no soporta señal de 5 voltios en las tarjetas.
- PCI 3.0: Es el estándar definitivo, ya sin soporte para 5 voltios.

Ranuras PCIX:



Las ranuras PCIX (OJO, no confundir con las ranuras PCIexpress) salen como respuesta a la necesidad de un bus de mayor velocidad. Se trata de unas ranuras bastante más largas que las PCI, con un bus de 66bits, que trabajan a 66Mhz, 100Mhz o 133Mhz (según versión). Este tipo de bus se utiliza casi exclusivamente en placas base para servidores, pero presentan el grave inconveniente (con respecto a las ranuras PCIe) de que el total de su velocidad hay que repartirla entre el número de ranuras activas, por lo que para un alto rendimiento el número de éstas es limitado.
En su máxima versión tienen una capacidad de transferencia de 1064MB/s.

Sus mayores usos son la conexión de tarjetas Ethernet Gigabit, tarjetas de red de fibra y tarjetas controladoras RAID SCSI 320 o algunas tarjetas controladoras RAID SATA.

Ranuras AGP:



El puerto AGP (Accelerated Graphics Port) es desarrollado por Intel en 1996 como puerto gráfico de altas prestaciones, para solucionar el cuello de botella que se creaba en las gráficas PCI. Sus especificaciones parten de las del bus PCI 2.1, tratándose de un bus de 32bits.

Con el tiempo has salido las siguientes versiones:

- AGP 1X: velocidad 66 MHz con una tasa de transferencia de 266 MB/s y funcionando a un voltaje de 3,3V.
- AGP 2X: velocidad 133 MHz con una tasa de transferencia de 532 MB/s y funcionando a un voltaje de 3,3V.
- AGP 4X: velocidad 266 MHz con una tasa de transferencia de 1 GB/s y funcionando a un voltaje de 3,3 o 1,5V para adaptarse a los diseños de las tarjetas gráficas.
- AGP 8X: velocidad 533 MHz con una tasa de transferencia de 2 GB/s y funcionando a un voltaje de 0,7V o 1,5V.

Se utiliza exclusivamente para tarjetas gráficas y por su arquitectura sólo puede haber una ranura AGP en la placa base.

Se trata de una ranura de 8cm de longitud, instalada normalmente en principio de las ranuras PCI (la primera a partir del Northbridge), y según su tipo se pueden deferenciar por la posición de una pestaña de control que llevan.


Imagen 1 - borde de la placa base a la Izda.


Imagen 2 - borde de la placa base a la Izda.


Imagen 3 - borde de la placa base a la Izda.

Las primeras (AGP 1X y 2X) llevaban dicha pestaña en la parte más próxima al borde de la placa base (imagen 1), mientras que las actuales (AGP 8X compatibles con 4X) lo llevan en la parte más alejada de dicho borde (imagen 2).

Existen dos tipos más de ranuras: Unas que no llevan esta muesca de control (imagen 3) y otras que llevan las dos muescas de control. En estos casos se trata de ranuras compatibles con AGP 1X, 2X y 4X (las ranuras compatibles con AGP 4X - 8X llevan siempre la pestaña de control).

Es muy importante la posición de esta muesca, ya que determina los voltajes suministrados, impidiendo que se instalen tarjetas que no soportan algunos voltajes y podrían llegar a quemarse.

Con la aparición del puerto PCIe en 2004, y sobre todo desde 2006, el puerto AGP cada vez está siendo más abandonado, siendo ya pocas las gráficas que se fabrican bajo este estándar.

A la limitación de no permitir nada más que una ranura AGP en placa base se suma la de la imposibilidad (por diferencia de velocidades y bus) de usar en este puerto sistemas de memoria gráfica compartida, como es el caso de TurboCaché e HyperMemory.

Ranuras PCIe:



Las ranuras PCIe (PCI-Express) nacen en 2004 como respuesta a la necesidad de un bus más rápido que los PCI o los AGP (para gráficas en este caso).

Su empleo más conocido es precisamente éste, el de slot para tarjetas gráficas (en su variante PCIe x16), pero no es la única versión que hay de este puerto, que poco a poco se va imponiendo en el mercado, y que, sobre todo a partir de 2006, ha desbancado prácticamente al puerto AGP en tarjetas gráficas.

Entre sus ventajas cuenta la de poder instalar dos tarjetas gráficas en paralelo (sistemas SLI o CrossFire) o la de poder utilizar memoria compartida (sistemas TurboCaché o HyperMemory), además de un mayor ancho de banda, mayor suministro de energía (hasta 150 watios).

Este tipo de ranuras no debemos confundirlas con las PCIX, ya que mientras que éstas son una extensión del estándar PCI, las PCIe tienen un desarrollo totalmente diferente.

El bus de este puerto está estructurado como enlaces punto a punto, full-duplex, trabajando en serie. En PCIe 1.1 (el más común en la actualidad) cada enlace transporta 250 MB/s en cada dirección. PCIE 2.0 dobla esta tasa y PCIE 3.0 la dobla de nuevo.

Cada slot de expansión lleva 1, 2, 4, 8, 16 o 32 enlaces de datos entre la placa base y las tarjetas conectadas. El número de enlaces se escribe con una x de prefijo (x1 para un enlace simple y x16 para una tarjeta con dieciséis enlaces

los tipos de ranuras PCIe que más se utilizan en la actualidad son los siguientes:

- PCIe x1: 250MB/s
- PCIe x4: 1GB/s (250MB/s x 4)
- PCIe x16: 4GB/s (250MB/s x 16)

Como podemos ver, las ranuras PCIe utilizadas para tarjetas gráficas (las x16) duplican (en su estándar actual, el 1.1) la velocidad de transmisión de los actuales puertos AGP. Es precisamente este mayor ancho de banda y velocidad el que permite a las nuevas tarjetas gráficas PCIe utilizar memoria compartida, ya que la velocidad es la suficiente como para comunicarse con la RAM a una velocidad aceptable para este fin.

Estas ranuras se diferencian también por su tamaño. En la imagen superior podemos ver (de arriba abajo) un puerto PCIe x4, un puerto PCIe x16, un puerto PCIe x1 y otro puerto PCIe x16. En la parte inferior se observa un puerto PCI, lo que nos puede servir de dato para comparar sus tamaños.

Cada vez son más habituales las tarjetas que utilizan este tipo de ranuras, no sólo tarjetas gráficas, sino de otro tipo, como tarjetas WiFi, PCiCard, etc.

Incluso, dado que cada vez se instalan menos ranuras PCI en las placas base, existen adaptadores PCIe x1 - PCI, que facilitan la colocación de tarjetas PCI (eso sí, de perfin bajo) en equipos con pocas ranuras de éste tipo disponibles

Por último, en la imagen inferior podemos ver el tamaño de diferentes tipos de puertos, lo que también nos da una idea de la evolución de éstos.



En fin, espero que este tutorial les sirva de utilidad a la hora de identificar una ranura de expansión y de saber las propiedades que pueden tener.

Disquetera ♥



QUE ES UNA DISQUETERA.

Los disquetes o floppy disc (discos flexibles) son unidades de almacenamiento.

Las disqueteras son los periféricos con los que se accede a ese tipo de unidades de almacenamiento.

Los primeros disquetes utilizado en la informática eran de 8 pulgadas de diámetro (unos 20 centímetros) y podía almacenar una pequeña cantidad de datos comparados con lo que sacaron mas adelante las disqueteras y disquetes de 5¼ pulgadas. Estas utilizaba la misma tecnología de base y se llegaron a fabricar en varias versiones, siendo las más populares las de Doble Cara/Doble Densidad DS/DD, con una capacidad de 360 KBytes. En este formato el tamaño máximo que llegó a fabricarse fue el de alta densidad HD, con una capacidad de 1,2MBytes.

Luego aparecieron las disqueteras de 3½ pulgadas y sus disquetes de 2 modelos: Los de baja densidad, con una capacidad de 720KBytes y los alta densidad de 1,44MBytes. La única diferencia física es que los de 720KBytes lleva un agujero en la parte trasera del disco y el de 1,44MBytes lleva 2 agujeros en el disco.

Hay otros que son los cuádruple los de Densidad Extra ED que llegan hasta los 2,88 Mbyets de estos no vamos hablar ni de los Zip que llegan a los 200Mbytes.

Hablamos de las disqueteras de 3¼ que vienen en serie en los PC aquí veremos como es una disquetera.



Esta se montan en la bahía de 3.5'' que tenemos en la torre y van conectado con un cable de alimentación y un cable de datos a la placa base, aquí vemos donde va el cable de datos en la placa. Se llama conector FDD (Floppy Disk Connector)



Por regla general las disqueteras de 3 1/2 las reconoce el sistema operativo sin problemas, ya que son Plug&Play.

La BIOS viene configurada de fábrica para que primero arranque con la unidad A:

Memoria Ram y Rom



Dentro de las Memorias físicas en nuestro Hardware, existen dos tipos en función de lectura/escritura o solamente lectura: la Memoria RAM y la Memoria ROM, aunque se diferencien sólo con una letra (a != o), también tienen diferencias técnicas que ampliaré a continuación.


La Memoria RAM es la que todos conocemos, pues es la memoria de acceso aleatorio o directo; es decir, el tiempo de acceso a una celda de la memoria no depende de la ubicación física de la misma (se tarda el mismo tiempo en acceder a cualquier celda dentro de la memoria). Son llamadas también memorias temporales o memorias de lectura y escritura.

En este tipo particular de Memoria es posible leer y escribir a voluntad. La Memoria RAM está destinada a contener los programas cambiantes del usuario y los datos que se vayan necesitando durante la ejecucón y reutilizable, y su inconveniente radica en la volatilidad al contrtarse el suministro de corriente; si se pierde la alimentación eléctrica, la información presente en la memoria también se pierde.

Por este motivo, surge la necesidad de una memoria que permanentemente, guarde los archivos y programas del usuario que son necesarios para mantener el buen funcionamiento del sistema que en se ejecute en la misma.

La Memoria ROM nace por esta necesidad, con la característica principal de ser una memoria de sólo lectura, y por lo tanto, permanente que sólo permite la lectura del usuario y no puede ser reescrita.

Por esta característica, la Memoria ROM se utiliza para la gestión del proceso de arranque, el chequeo inicial del sistema, carga del sistema operativo y diversas rutinas de control de dispositivos de entrada/salida que suelen ser las tareas encargadas a los programas grabados en la Memoria ROM. Estos programas (utilidades) forman la llamada Bios del Sistema.

Entonces, en conclusión:

- La Memoria RAM puede leer/escribir sobre sí misma por lo que, es la memoria que utilizamos para los programas y aplicaciones que utilizamos día a día
- La Memoria ROM como caso contrario, sólo puede leer y es la memoria que se usa para el Bios del Sistema.

Microprocesador


¿Que es el microprocesador?


El microprocesador, o simplemente el micro, es el cerebro del ordenador. Es un chip, un tipo de componente electrónico en cuyo interior existen miles (o millones) de elementos llamados transistores, cuya combinación permite realizar el trabajo que tenga encomendado el chip.
Los micros, como los llamaremos en adelante, suelen tener forma de cuadrado o rectángulo negro, y van o bien sobre un elemento llamado zócalo (socket en inglés) o soldados en la placa o, en el caso del Pentium II, metidos dentro de una especie de cartucho que se conecta a la placa base (aunque el chip en sí está soldado en el interior de dicho cartucho).
A veces al micro se le denomina "la CPU" (Central Process Unit, Unidad Central de Proceso), aunque este término tiene cierta ambigüedad, pues también puede referirse a toda la caja que contiene la placa base, el micro, las tarjetas y el resto de la circuitería principal del ordenador.
La velocidad de un micro se mide en megahertzios (MHz) o gigahertzios (1 GHz = 1.000 MHz), aunque esto es sólo una medida de la fuerza bruta del micro; un micro simple y anticuado a 500 MHz puede ser mucho más lento que uno más complejo y moderno (con más transistores, mejor organizado...) que vaya a "sólo" 400 MHz. Es lo mismo que ocurre con los motores de coche: un motor americano de los años 60 puede tener 5.000 cm3, pero no tiene nada que hacer contra un multiválvula actual de "sólo" 2.000 cm3.




Breve historia del microprocesador:


El primer "PC" o Personal Computer fue inventado por IBM en 1.981 (a decir verdad, ya existían ordenadores personales antes, pero el modelo de IBM tuvo gran éxito, entre otras cosas porque era fácil de copiar). En su interior había un micro denominado 8088, de una empresa no muy conocida (¡¡en serio!!) llamada Intel.
Las prestaciones de dicho chip resultan risibles hoy en día: un chip de 8 bits trabajando a 4,77 MHz (sí, 4 coma 77), aunque bastante razonables para una época en la que el chip de moda era el Z80 de Zilog, el motor de aquellos entrañables Spectrum que hicieron furor en aquellos tiempos, gracias sobre todo a juegos increíbles, con más gracia y arte que muchos actuales para Pentium MMX.
El 8088 era una versión de prestaciones reducidas del 8086, que marcó la coletilla "86" para los siguientes chips Intel: el 80186 (que se usó principalmente para controlar periféricos), el 80286 (de cifras aterradoras, 16 bits y hasta 20 MHz) y por fin, en 1.987, el primer micro de 32 bits, el 80386 o simplemente 386.
Al ser de 32 bits (ya comentaremos qué significa esto de los bits) permitía idear software más moderno, con funcionalidades como multitarea real, es decir, disponer de más de un programa trabajando a la vez. A partir de entonces todos los chips compatibles Intel han sido de 32 bits, incluso el flamante Pentium II.
Ocupémonos ahora de eso de compatibles Intel. El mundo PC no es todo el mundo de la informática personal; existen por ejemplo los Atari o los Apple, que desde el principio confiaron en otra empresa llamada Motorola. Sin embargo, el software de esos ordenadores no es compatible con el tipo de instrucciones de la familia 80x86 de Intel; esos micros, pese a ser en ocasiones mejores que los Intel, sencillamente no entienden las órdenes utilizadas en los micros Intel, por lo que se dice que no son compatibles Intel.
Aunque sí existen chips compatibles Intel de otras empresas, entre las que destacan AMD y Cyrix. Estas empresas comenzaron copiando flagrantemente a Intel, hasta hacerle a veces mucho daño (con productos como el 386 de AMD, que llegaba a 40 MHz frente a 33 MHz del de Intel, o bien en el mercado 486). Posteriormente perdieron el carro de Intel, especialmente el publicitario, pero hoy en día resurgen con ideas nuevas, buenas y propias, no adoptadas como antes.
Volviendo a la historia, un día llegó el 486, que era un 386 con un coprocesador matemático incorporado y una memoria caché integrada, lo que le hacía más rápido; desde entonces todos los chips tienen ambos en su interior.
Luego vino el Pentium, un nombre inventado para evitar que surgieran 586s marca AMD o Cyrix, ya que no era posible patentar un número pero sí un nombre, lo que aprovecharon para sacar fuertes campañas de publicidad del "Intel Inside" (Intel dentro), hasta llegar a los técnicos informáticos de colores que anunciaban los Pentium MMX y los Pentium II.
Sobre estos (los MMX y II, no los tipos ridículos de colores) y otros modelos recientes, incluyendo al Athlon con el que AMD ha resucitado cual ave Fénix, hablaremos más adelante.


Microprocesador antiguo:


Tal como está el mundo, podríamos decir que cualquiera que tenga más de un mes en el mercado. De todas formas, aquí vamos a suponer antiguo a todo micro que no sea un Pentium o similar (K5, K6, 6x86, Celeron...), los cuales se estudian en la siguiente página.
8086, 8088, 286
Les juntamos por ser todos prehistóricos y de rendimiento similar. Los ordenadores con los dos primeros eran en ocasiones conocidos como ordenadores XT, mientras que los que tenían un 286 (80286 para los puristas) se conocían como AT. En España se vendieron muchos ordenadores con estos micros por la firma Amstrad, por ejemplo.
Ninguno era de 32 bits, sino de 8 ó 16, bien en el bus interno o el externo. Esto significa que los datos iban por caminos (buses) que eran de 8 ó 16 bits, bien por dentro del chip o cuando salían al exterior, por ejemplo para ir a la memoria. Este número reducido de bits (un bit es la unidad mínima de información en electrónica) limita sus posibilidades en gran medida.
Un chip de estas características tiene como entorno preferente y casi único el DOS, aunque puede hacerse correr Windows 3.1 sobre un 286 a 16 ó 20 MHz si las aplicaciones que vamos a utilizar no son nada exigentes; personalmente, he usado el procesador de textos AmiPro 1.2 en Windows 3.1 en un 286 y sólo era cuestión de tomármelo con calma (mucha calma cuando le mandaba imprimir, eso sí).
Sin embargo, si tiene un ordenador así, no lo tire; puede usarlo para escribir textos (con algún WordPerfect antiguo), para jugar a juegos antiguos pero adictivos (como el Tetris, Prince of Persia, y otros clásicos), o incluso para navegar por Internet, sobre todo si el monitor es VGA y tiene un módem "viejo" (por ejemplo un 14.400). Si quiere saber algo sobre cómo reciclar esa vieja gloria,
pulse aquí.
386, 386 SX
Estos chips ya son más modernos, aunque aún del Neolítico informático. Su ventaja es que son de 32 bits; o mejor dicho, el 386 es de 32 bits; el 386 SX es de 32 bits internamente, pero de 16 en el bus externo, lo que le hace hasta un 25% más lento que el original, conocido como DX.
Resulta curioso que el más potente sea el original, el 386. La versión SX fue sacada al mercado por Intel siguiendo una táctica comercial típica en esta empresa: dejar adelantos tecnológicos en reserva, manteniendo los precios altos, mientras se sacan versiones reducidas (las "SX") a precios más bajos.
La cuestión es que ambos pueden usar software de 32 bits, aunque si lo que quiere usar es Windows 95 ¡ni se le ocurra pensar en un 386! Suponiendo que tenga suficiente memoria RAM, disco, etc., prepárese para esperar horas para realizar cualquier tontería.
Su ámbito natural es DOS y Windows 3.x, donde pueden manejar aplicaciones bastante profesionales como Microsoft Word sin demasiados problemas, e incluso navegar por Internet de forma razonablemente rápida. Si lo que quiere es multitarea y software de 32 bits en un 386, piense en los sistemas operativos OS/2 o Linux (¡este último es gratis!).

486, 486 SX, DX, DX2 y DX4
La historia se repite, aunque esta vez entra en el campo del absurdo de la mano del márketing "Intel Inside". El 486 es el original, y su nombre completo es 80486 DX; consiste en:
un corazón 386 actualizado, depurado y afinado;
un coprocesador matemático para coma flotante integrado;
una memoria caché (de 8 Kb en el DX original de Intel).
Es de notar que la puesta a punto del núcleo 386 y sobre todo la memoria caché lo hacen mucho más rápido, casi el doble, que un 386 a su misma velocidad de reloj (mismos MHz). Hasta aquí el original; veamos las variantes:
486 SX: un DX sin coprocesador matemático. ¿Que cómo se hace eso? Sencillo: se hacen todos como DX y se quema el coprocesador, tras lo cual en vez de "DX" se escribe "SX" sobre el chip. Dantesco, ¿verdad? Pero la teoría dice que si lo haces y lo vendes más barato, sacas dinero de alguna forma. Lo dicho, alucinante.
486 DX2: o el "2x1": un 486 "completo" que va internamente el doble de rápido que externamente (es decir, al doble de MHz). Así, un 486 DX2-66 va a 66 MHz en su interior y a 33 MHz en sus comunicaciones con la placa (memoria, caché secundaria...). Buena idea, Intel.
486 DX4: o cómo hacer que 3x1=4. El mismo truco que antes, pero multiplicando por 3 en vez de por 2 (DX4-100 significa 33x3=99 ó, más o menos, 100). ¿Que por qué no se llama DX3? Márketing, chicos, márketing. El 4 es más bonito y grande...
En este terreno Cyrix y AMD hicieron de todo, desde micros "light" que eran 386 potenciados (por ejemplo, con sólo 1 Kb de caché en vez de 8) hasta chips muy buenos como el que usé para empezar a escribir esto: un AMD DX4-120 (40 MHz por 3), que rinde casi (casi) como un Pentium 75, o incluso uno a 133 MHz (33 MHz por 4 y con 16 Kb de caché!!).
Por cierto, tanto "por" acaba por generar un cuello de botella, ya que hacer pasar 100 ó 133 MHz por un hueco para 33 es complicado, lo que hace que más que "x3" acabe siendo algo así como "x2,75" (que tampoco está mal). Además, genera calor, por lo que debe usarse un disipador de cobre y un ventilador sobre el chip.
En un 486 se puede hacer de todo, sobre todo si supera los 66 MHz y tenemos suficiente RAM; por ejemplo, yo hice gran parte de estas páginas, que no es poco.






Placa madre


¿Que es la placa madre?



Tarjeta o placa central de circuitos en un equipo electrónico complejo (como una computadora personal).La placa madre también es conocida como motherboard, mainboard, baseboard, system board, placa/tarjeta base, etc.El propósito más básico de las placas madres es proveer las conexiones lógicas y eléctricas entre otros componentes del sistema.Una placa madre típica de una computadora de escritorio, consta de un microprocesador, de memoria principal, de puertos y conectores, etc. El resto de los dispositivos electrónicos como discos duros, tarjeta aceleradora de gráficos, placa de sonido, etc. son conectados a la placa madre a través de conectores y/o cables.



Componentes de la placa madre:

Una placa madre típica en PCs consiste de un gran circuito impreso que incluye como mínimo:* Sockets, en donde uno o más CPUs son instalados.* Slots, en donde la memoria principal es intalada (generalmente módulos DIMMs con memoria DRAM).* Un chipset: Northbridge y Southbridge.* Chips de memoria no volátil (generalmente Flash ROM), que contiene la BIOS o el firmware del sistema.* Un reloj que produce señales de reloj para sincronizar varios componentes.* Bahías o zócalos para tarjetas de expansión.* Conectores de energía para distribuirla entre los distintos dispositivos de la computadora. La electricidad se recibe desde la fuente eléctrica.* Puertos de conexión para dispositivos como los PS/2 para el ratón y el teclado, o puertos USB.* También algunas placas madres incluyen dispositivos de enfriamiento como ventiladores.* Muchas placas madres incluyen dispositivos que antes sólo existían como placas o tarjetas separadas y debían conectarse a la placa madre empleando zócalos libres en la misma. Por ejemplo, muchas placas madres vienen integradas con placa de sonido, de aceleración de video, módem, etc.